Grid challenges add to need for more nuclear, WEC side-event told

26 April 2024

Massive growth is expected in the global demand for electricity, which will require an expansion of both generation and the transmission system, speakers at a side event at the World Energy Congress 2024 agreed. Nuclear power will play an important role, they said, in ensuring the resilience of the future electricity system.

The panel (Image: WNN)

The session - Building low-carbon resilient electricity system - was co-organised by World Nuclear Association, the United Nations Economic Commission for Europe (UNECE) and the Electric Power Research Institute (EPRI) on the sidelines of the World Energy Congress, held in Rotterdam, The Netherlands, on 22-25 April.

Asked about the biggest challenges to the global electricity system, World Nuclear Association Director General Sama Bilbao y León said that many developed countries have "very robust and reliable energy systems" that have been built over the years but when adding new generation - particularly intermittent renewable generation - "we have forgotten to ensure the resiliency of the system". "We are finding ourselves close to breaking point where any most-needed capacity ... is really going to require major investment into the grid itself," she said.

Neil Wilmshurst, Senior Vice President, Energy System Resilience and Chief Nuclear Operator at EPRI, said that in the developed world the challenge is integrating renewables, reliability, and resilience in the context of increasing demand. He noted that conservative estimates put future electricity demand at twice or three times the current demand. "If you look at the amount of hydrogen people say could be in demand in the US, it would take the entire current generation capacity of the US to produce it. That is the kind of magnitude of generation we're talking about. Then you throw on top of that the coming load from data centres." Meanwhile, electricity demand in developing countries is also rapidly expanding. A major challenge, he said, will be simultaneously increasing electricity supply in the developed world whilst electrifying the developing world.

Iva Brkic, Secretary of UNECE's Sustainable Energy Division, noted a recent International Energy Agency report which estimated that there was a need to add or refurbish a total of more than 80 million kilometres of grids by 2040, the equivalent of the existing global grid. "We need to double it in the next 14 years to meet our targets," she said. "So where are those resources going to come from? Where are the critical raw materials that we need to identify, to secure the supply chains, to really build that infrastructure? Now we add another layer to this - keeping the resiliency but also the reliability of that grid."

Brkic said the effects of climate change are already being experienced around the world. "How can we ensure that the system that we are now redesigning and building and modernising can withstand those impacts of climate change - the heatwaves, the droughts. This is something that we need to pay attention to.

"At the UNECE, we like to think also about the aspects of balancing between delivering on energy security, affordability and environmental sustainability. And when we think now about modernising the electricity system, it's also about balancing those aspects and creating the resiliency while actually cleaning the energy system."

The electricity sector is still one of the highest emitters of CO2, with many countries relying heavily on fossil fuels for electricity production, said Wassim Ballout, and energy analyst at EDF's Corporate Strategy Division. "One of the biggest challenges will be to satisfy this significant demand growth with decarbonised production. Not only decarbonising the existing production but also to cope with the significant increase ... the challenge would be to invest in all low-cost, low-emission technologies and to have a technological neutral approach and have good incentives to do that."

Bilbao y León said people tend to think of the energy systems of the future as being a version of what currently exists. However, she said the technology is going to be very different. "Very importantly I think that we are going to see a lot of coupling of systems … electricity is obviously going to be very important as we try to electrify a lot of energy, but clearly there are going to be additional energy vectors … all these technologies are going to make this system more complex … we can have different energy products depending on what is needed at different times to ensure the reliability and the resiliency and the flexibility of the system."

Ballout spoke about scenarios that EDF have been developing for more than 15 years, mainly for internal use. This year the company has made its scenario for net-zero publicly available. "It's fundamentally different from the other scenarios we're developing because we start with the constraints and the end. We start with net neutrality in 2050 and we go backwards. So we try to find the most economically efficient pathway to achieve this neutrality. And when I say economically efficient, I think of welfare maximisation, the minimisation of the cost and the optimisation of the resilience of the system.

"And that's how we come to a mix that shows we have to multiply by six our renewable capacity in Europe [by 2050] - we've been talking about 15 Western European countries. We will have between 120 and 150 gigawatts of nuclear capacity. We will enhance significantly the production of biofuels and CCS. We see this path will take us to a significant increase of flexibility needs … it's a very important part of the resilience of the system."

Wilmshurst said it was clear that nuclear and renewables will have a role together in the future electricity system. "If we have an idealistic view that renewables can expand and expand and expand, the transmission grid needs to expand and expand, get more complicated, and when it gets more complicated the potential for it be less reliable increases."

However, he noted that financing is a hurdle for nuclear deployment in most countries. "A great part of nuclear being perceived as expensive is the financing cost. So why is the financing cost so high? Because you have to build the nuclear plant - it takes a long time, it's complicated - but that huge capital investment upfront alone then gives you the facility that runs for many decades to recoup the investment."

"If we get deployment plans together with a clear picture ... all of a sudden, the deployment experience increases, deployment risk goes down, the confidence in the financial markets that the projects can be delivered on time increases. Finance starts flowing. If we don't make a decision to move, we don't start doing things, we don't learn as well. There's hesitancy in the markets to invest."

Ballout said nuclear and hydro play a very important role because outages of plants can be scheduled during periods where the demand is lower. "But that's why we say we have to continue financing and investing in hydro and nuclear. The nuclear fleet is capable of ramping up when suddenly you don't have sun or wind. It's possible technologically and technically speaking and at the same time it is possible to ramp down in order to leave room for renewables to produce and that's really the very important message for us."

Researched and written by World Nuclear News